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ABSTRACT 

This paper describes the first steps for the setting up and exploitation of the PLATFORM test bench. 
PLATFORM test bench is intended for the ground testing and validation of GNC technologies and sensors 
for scenarios including synchronized flight of two or more spacecraft (Formation Flying and Rendez-vous 
and Docking) and it can be eventually extended to cope with the requirements for robotic applications (f.i. 
cooperative robotic operations on the Mars surface). PLATFORM test bench includes the particularity, 
with respect to other ground test benches, of allowing the use of real sensor measurements (including 
most of the error sources present in a space scenario, as transmission delays) obtained through the 
recreation of a real dynamic profile of spacecraft mock-ups by using an accurate numerically controlled 
robotic arm. This project has been supported by the Spanish National Space Program. 

1.0 INTRODUCTION 

In the last few years a clear tendency toward distributing the functionality of a single spacecraft among 
several satellites flying in formation has been shown, the most of the missions planning this kind of 
approach being characterized by very severe requirements in terms of relative positioning accuracy among 
involved platforms. 

Formation flying could be defined as the coordinated motion control of a group of vehicles where the 
vehicle positions relative to each other are important. In general, the concept of navigation in formation 
can be applied to any kind of vehicle, like trucks, aircraft, mobile robots, etc. 

Many future space applications will benefit from using this formation flying technology to perform 
distributed observations, including: Earth mapping (simultaneous interferometric SAR, magnetosphere), 
astrophysics (stellar interferometry), and surveillance. 

The goal is to accomplish these science tasks using a distributed array of much simpler, but highly 
coordinated, vehicles. This approach represents a new systems architecture that provides many 
performance and operations advantages, such as: 

• 

• 

• 

Enables extensive co-observing programs to be conducted autonomously without using extensive 
ground support. 

Increased separation between instruments could provide orders of magnitude improvement in 
space-based interferometry. 

An array of simpler micro-satellites provides a flexible architecture that offers a high degree of 
redundancy and reconfigurability in the event of a single failure. 

Molina Cobos, M.A. (2006) PLATFORM: The GMV’s Test-Bench for Formation Flying, RvD and Robotic Validation. In Emerging and 
Future Technologies for Space Based Operations Support to NATO Military Operations (pp. 2-1 – 2-14). Meeting Proceedings  
RTO-MP-RTB-SPSM-001, Paper 2. Neuilly-sur-Seine, France: RTO. Available from: http://www.rto.nato.int/abstracts.asp. 

RTO-MP-RTB-SPSM-001 2 - 1 

UNCLASSIFIED/UNLIMITED 

http://www.rto.nato.int/abstracts.asp
mailto:mamc@gmv.es


Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
01 DEC 2006 

2. REPORT TYPE 
N/A 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
PLATFORM: The GMVs Test-Bench for Formation Flying, RvD and
Robotic Validation 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
GMV SA, Isaac Newton 11, PTM 28760 Tres Cantos, Madrid Spain 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release, distribution unlimited 

13. SUPPLEMENTARY NOTES 
See also ADM202419., The original document contains color images. 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

UU 

18. NUMBER
OF PAGES 

14 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



PLATFORM: The GMV’s Test-Bench for 
Formation Flying, RvD and Robotic Validation  

UNCLASSIFIED/UNLIMITED 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Places the design emphasis on building and flying the science instruments, not on the 
development of the bus platform itself. 

Enables the low-cost, short lead-time instruments to be built, launched and operated at short time. 

The strong interest in the formation flying concept shown by all space agencies is demonstrated by the 
number of missions that are being promoted. Some examples are (the first three are being promoted by the 
USA, while the last three correspond to European efforts): 

New Millenium Interferometer (NASA) 

Earth Observation-1 Mission (NASA) 

Orion (USA) 

FF Demonstration Mission, most likely to be hosted by SMART-3 (ESA) 

IRSI-Darwin (Infra-Red Space Interferometer) (ESA) 

LISA (Laser Interferometer Space Antenna) (ESA) 

Due to the strong interest in the present and the coming future on this kind of missions, it is fundamental 
to develop low-cost and high-flexible test benches allowing the on-ground validation of as much of the 
involved technology as possible, in order to reduce the number of new technology chain elements to be 
tested and validated only through the costly space demonstration missions, which have the risk of 
suffering a failure in an intermediate element that makes impossible to test and validate the full technology 
chain and global functionality. 

PLATFORM test bench tries to fill part of the gap existent between the currently ground facilities and the 
space demonstration flights, allowing higher reliable demonstration flights by reducing the testing and 
validation uncertainty through the ground checking in reproduced space conditions. 

2.0 JUSTIFICATION OF PLATFORM TEST BENCH 

From the operational point-of-view, the most stringent challenges imposed by formation flying are: 

Onboard sensing and inter vehicle communication required to perform the autonomous closed-
loop relative navigation and attitude determination and control. 

High-level mission management to enable task allocation across the fleet of spacecraftt. 

High-level fault detection recovery to enhance the mission robustness. 

The first point is of capital importance for the mission success, including the adequate gathering of 
scientific data. It is directly related with the other two points from the point of view of autonomy in 
control and operation of each satellite during the mission. The third point also includes the ability to detect 
potential collisions between vehicles and to conduct the corresponding avoiding maneuvers. 

Most usual current ground testing test benches are based on SW simulators, distinguishing: 

Complete SW simulators (f.i. based on Matlab/Simulink), with dedicated functions to the 
simulation of the DKE and the simulation of the sensors measurements and actuators behaviour 
and, separately, dedicated blocks to the on-board functions: GNC, FDIR, Mission and Vehicle 
Management, Communications, … 

Complete SW simulators embedded in an environment allowing the use of real hardware in the 
loop (as f.i. the European environment EuroSim), where the use of an on-board processor ERC32 
emulator allows to host all the on-board functions in a realistic space processor separated from the 
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DKE, sensors and actuators through a communication layer that reproduces the real interfaces. 
Real sensors may also be used, although the input of the sensors shall be conveniently simulated. 

PLATFORM test-bench represents a step ahead, since it allows to generate a real relative DKE between 
the spacecraft constellation though the use of the robotic arm together with the use of real sensors where 
the provided measurements are based upon real signal transmission and/or real observations (GPS-like 
receivers/emitters, optical cameras or others). Actuators behaviour can be reproduced through the answer 
of the robotic arm to control commands produced by the on-board functions. This approach allows 
complementing the EuroSim-based test benches, since it reproduces the real dynamic of the constellation 
and provides real sensors measurements and keeping, at the same time, the advantage of using on-board 
processor emulators if desired (through the EuroSim environment) or using a PC-based on-board 
processor emulator as first step. 

Fig. 1 presents the three concepts of test benches, showing the natural evolution from one to the others as 
consequence of the increasing validation and demonstration level before being ready for a demo flight. 

Three main objectives are considered: 

• 

• 

• 

The development of a hardware test-bed that actually mimics the relative motion of two or more 
satellites in different space scenarios. 

Implementation upon the test-bed of real navigation sensors, such as GPS receivers and 
pseudolites so as to test GNC algorithms under conditions as close as possible to real space 
conditions. 

Development and/or integration upon the test-bench of the most advanced guidance, navigation 
and control algorithms conceived to solve formation flying issues, such as those navigation 
algorithms developed by GMV for IRSI/DARWIN mission. 
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 possible the risk associated to fly multiple satellites in formation, which 
view of carried instruments, as a unique platform, it is worthwhile to test as 
e required GNC algorithms, and sensors and actuators. This, together with 
the design and implementation of the navigation algorithms for different 
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ESA’s FF mission (i.e. SMART-2/3, IRSI-DARWIN), brought to the idea of setting up the PLATFORM 
test-bench able to reproduce as much as possible on-ground space flying conditions, including sensors and 
actuators. The test bench will allow to investigate and test GNC, sensing, communication and mission 
management issues associated with precise formation flying.  

PLATFORM, developed in the frame of the Spanish Space Programme, and co-funded by the Spanish 
Science Ministry (via CDTI) and GMV S.A. itself, has as major target to provide the more cost-effective 
solution for: 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

On-ground Validating and Testing of Autonomous Navigation Algorithms for mini-satellites, FF, 
RvD and Robotic applications. 

Being the first step toward the validation of navigation sensors and actuators. 

PLATFORM initial setting is specifically adapted to a DARWIN-type scenario (RF-based sensors are the 
main ones), although it is easily extensible to other scenarios. Current setting is composed by: 

A 6 DoF robotic arm for accurate reproduction of the constellation DKE. 

Two S/C mock-ups, that will host all the sensing equipments. They shall be representative in 
shape and structure of the real spacecraft, since the external structure will impact on the accuracy 
of the sensors measurements (multipath effect over GPS-like measurements, image processing in 
camera-based navigation). 

Four GPS-like pseudolites, for creating a virtual constellation of multiple spacecraft (only two 
mock-ups are used up to now). 

Two position-attitude GNSS receivers each with 3 antennas, for providing the navigation filters 
with measurements of relative position, velocity, attitude and attitude rate. 

One navigation camera, for acquiring relative navigation observations in case of scenarios with 
uncooperative spacecraft. 

One GPS constellation signal outdoor-indoor repeater. 

Several PCs, for controlling the robotic arm, the GPS-like pseudolites, hosting the on-board 
processor functions and others. 

and provides the following major features: 

DKE computer-based generation. 

High level of DKE accuracy knowledge through numerically controlled robotic arm. 

Real sensing (radiated RF signals). 

Real on-board relative navigation algorithms (DARWIN-based as starting point). 

Very accurate performance assessment thanks to the accurately known robotic DKE. 

Possibility of feeding-back the robotic DKE with a control law. 

One of the S/C mock-up is statically placed, while the second mock-up is placed on the robotic arm, 
simulating the formation flying S/C with respect to the first static one. The motion of the robot is given 
from one side by the DKE including all acting perturbation, and from the other by the S/C AOCS tending 
to fulfill the formation accuracy requirements. Fig. 2 shows a diagram of the test bench setting, and the 
following sections will introduce in detail the main components of PLATFORM. 
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Fig. 2: PLATFORM test bench setting diagram 

3.1 Robotic Arm for DKE Generation 
The PA10-6CE Robot is a 6 degrees of freedom manipulator with the following characteristics: the arm 
unit weight is 38Kg and can lift an article of 10 kg weight. Six joints compose the vertical joint type 
architecture of the main body: S1, S2, E1, E2, W1, W2 from robot mounting base (“S” stands for shoulder 
joint, “E” for elbow joint and “W” for wrist joint).  The robot arm has the reach of 1m, a positional 
repeatability of ±0.1 mm and is controlled by a personal computer. The following table shows joint 
operating limitations: 

Limit (degree) 
Name of axes Mechanical 

limit Servo limit Software 
limit 

Maximum 
operating 

speed 
(rad/sec) 

S1 (Rotation) ±180 ±178 ±177 ±1 
S2 (Swing) +127,-67 +125-65 +124,-64 ±1 
E1 (Swing) +164,-113 +159,-108 +158,-107 ±2 
E2 (Rotation) ±270 ±256 ±255 ±2 π 
W1 (Swing) ±180 ±166 ±165 ±2π 
W2 (Rotation) ±270 ±256 ±255 ±2π 

Table 1: Joint operation range and speed limits 

3.2 Spacecraft Mock-ups 
Spacecraft mock-ups have been manufactured using an external structure on Aluminium alloy and 
recovered with a thermal coat. The following figure shows the mock-up in an intermediate assembly step. 
Characteristic size of the central body is 40 cm and the wingspan of 1.5 meters. 
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Fig. 3: Manufactured spacecraft mock-up 

3.3 RF Signal Generation through Pseudolites 
The GPS-like signal is generated by using the NAVindoor system manufactured by Space Systems 
Finland, and it is composed by five principal components: 

• 

• 

• 

• 

• 

4 Pseudolites (PL) 

5 Radio modems 

4 Helix antenna 

1 Reference receiver (with patch antenna) 

1 Master control unit 

The system is designed to be used in a hall with floor size of approximately 100x100m and a height of 7m. 
The path loss when placed in the middle of one of the walls at 7m height, with a tilt angle of 20 degrees is 
hereafter shown. 

 
Fig. 4: Helix antenna path loss 

3.4 Navigation Sensors 

3.4.1 GPS Receivers 

The selected GPS receiver is the PolaRx2 by Septentrio. PolaRx2 is a versatile high-end dual-frequency 
GNSS receiver for precise positioning and timing applications. It is a general-purpose 48-channel GNSS 
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receiver for high-end OEM applications, capable of tracking satellites from up to 3 different antennas. The 
PolaRx2 supports reception of the L1 and L2 signals from up to 16 GPS satellites and is ready to handle 
GLONASS and SBAS (such as EGNOS and WAAS) signals. 

PolaRx2 performance is detailed below by the following characteristics: 

Measurement accuracy 
(1 Hz measurement rate) 

C/A pseudo ranges 0.15 m 
P1/P2 pseudo ranges 0.1 m 

L1 carrier phase 0.2 mm 
L2 carrier phase 0.4 mm 

L1/L2 Doppler 2.5 mHz (0.5 
mm/sec) 

Table 2: PolaRx2 provided measurements accuracy 

3.4.2 Camera 

A commercial high resolution digital camera (Sony DFW-X700) has been selected for camera-based 
navigation development. The image processing algorithms will be internally developed by GMV. 

3.5 Integrated Test Bench 
The result after the test bench integration is shown in the following figures. 

Fig. 5: Static mock-up close to the robotic arm 
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Fig. 6: S/C mock-up mounted at the top of the robotic arm 

4.0 PLATFORM CALIBRATION 

The correct and accurate calibration of the test bench is a key driver on the validation level that will be 
achieved by the test bench. Since the calibration residual error will be directly added over the performance 
figure evaluated for the GNC functions, it is fundamental to keep the test bench calibration residual as low 
as possible (target figure is the millimeter level). 

For achieving this high level calibration, two sequential calibration steps are followed: 

• 

• 

Unitary calibration, where all equipments involved in the DKE generation and sensors 
measurements are calibrated with respect to its own references. 

Integrated test bench calibration, where all unitary references are referred to a common 
PLATFORM reference, that will be used as master reference. 

4.1 Unitary Calibration 

4.1.1 Robotic Arm 

The robotic arm calibration procedure is split in two phases: the calibration error measurement and the 
compensation of this calibration error. 

The purpose of the calibration operations is to reduce the gap existing between the robot simulation world 
and the real world. In fact, the robot controller works with a nominal model that, without the calibration, 
can be quite different from the real robot. To provide a link between simulation and the real world the 
calibration routines are performed both on the robot arm and on the possible tools and the work 
environment. 

The pose term is commonly used to refer the position and orientation of an object. In three dimensions, the 
pose is given by the six-tuple [x, y, z, roll, pitch, yaw]. 
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The robot calibration may be mainly performed in two ways: 

• 

• 

Pose error measurement: through the controller commands, the robot is requested to move to a 
particular position. External contactless measurement tools are used to measure the “true” pose. 
The difference between the measured and commanded location is the pose error. 

Pose matching: the robot is driven to a known location and the pose calculated by the robot 
controller is recorded. The difference between the known pose and that calculated by the 
controller leads to the pose error. The two poses are different because the controller uses the 
nominal robot model and measured joint angles at the encoders to calculate the pose, both 
different from the real robot world. 

The first method is selected for calibration of the robotic arm, where the external contactless measurement 
tool selected is a laser theodolite (see Fig. 7). 

Fig. 7: Calibration approach using a laser theodolite 

From the calibration procedure, the system has an accurate model of the real robot with the work tools and 
the environment that can be used to make a robot compensation to improve its accuracy. The strategy 
compensation readapts the nominal points where the robot have to go. The main points to the 
compensation are the following: 

• 

• 

• 

At the beginning and since the robot controller still has only the nominal robot model, the inverse 
kinematics used by the controller to calculate the joint values required to reach the wished 
position will produce error on the real achieved position. 

To get the robot moving to the correct position, the accurate model measured in the calibration 
phase (e.g. theodolite measurements) is used to perform inverse kinematics calculation, providing 
the required joint values for the real robot. 

Using these joint values back into the nominal robot model and performing forward kinematics, a 
new compensated position is obtained. This new position used by the robot controller with a 
nominal model gives the required joint values and thus moves to the required position. 

In effect, this method actualizes the difference between the real model and the nominal model to every 
position, before transferring the program to the robot controller (see Fig. 8). 
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Fig. 8: False positions method 

 

4.1.2 RF Pseudolites and GPS Receivers 

The calibration of the GPS-like pseudolites and the receivers is made together in a common calibration 
process. The reason is that each of the equipments is necessary to calibrate the other one and, then, the 
collected measurements contain both pseudolites and receivers errors. 

The main elements that are calibrated are: 

• 

• 

• 

• 

• 

• 

• 

Center of phase of the pseudolites emitting antennas. 

Delay time between the GPS-like signal generation in the pseudolites and the antenna emission. 

Center of phase of the mock-up receiving antennas. 

Delay time between the GPS signal reception at the antenna and the insertion into the receiver 
processor. 

Multipath effects over the received signals at the mock-up antennas. Since the test bench is hosted 
indoor, and although the clear available environment (building room of 25x25x8 meters without 
any internal metallic structure) in terms of obstacles that could be the source of the multipath 
reflections and diffractions, the multipath effect is expected as one of the major error sources in 
the calibration process. 

Since the environment is frozen and will minimally change during testing campaigns, a multipath 
calibration campaign based on the repeatability of the multipath is currently being carried out. 

Desynchronisation between pseudolites clock and receivers clock. In this case, this parameter is 
part of the relative navigation state vector (as it would be in a real mission with multiple vehicles 
hosting RF emitting/receiving devices) and will be estimated through the relative navigation 
algorithms. 

All above elements will be estimated and calibrated through the use of the measurements collected from 
the receiving antennas with the help of the laser theodolite tool that will allow to accurately measure the 
real position of the different equipment elements and compare against the collected sensors measurements. 
Different measurements combinations will be created to isolate some effects from the others. 
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4.1.3 Camera 

The calibration of the camera is performed with the help of the laser theodolite measurement tool by 
matching the estimated position and attitude of the camera through the image processing with the real 
position and attitude measured by the theodolite. 

4.2 Test Bench Calibration 
After the unitary calibration of the different elements and equipment that compose the test bench, it 
follows to achieve the compatibility between all references through the use of a common reference. The 
common reference shall be provided, obviously, by an external measurement tool. In this case, the laser 
theodolite associated reference (or any third reference frozen with respect to the theodolite associated one) 
is our master (common) reference to which refer the rest of PLATFORM elements references) with 
respect to. The theodolite measurements of the PLATFORM elements will allow to determine the 
transformation matrices of any element reference frame to the master one. 

Fig. 9 shows a schematic diagram illustrating the full test bench calibration approach. 

 

Fig. 9: Test bench elements calibration link 

5.0 PLATFORM APPLICABILITY FIELD 

PLATFORM composition and setting has been presented in the previous sections. From the test bench 
configuration and characterizations, it is possible to discuss the applicability fields and scenarios to which 
the test bench could be used for. 

First of all, the direct application scenario (the one that has been kept in mind during the original proposal) 
is a short-range (1-25 meters) formation flying scenario composed by two or more platforms. Although 
only having a dynamically controlled robotic arm, our calibrated scenario offers the invaluable feature of 
being a repeatable scenario. This means that a multiple vehicle scenario could be generated by 
superposing several test bench configurations where different (in different tests that will be later 
superposed) vehicles are dynamically controlled by the robotic arm. Special care shall be taken into 
account on how the spurious effects are amplified by the superposition. 
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Secondly, medium and long-range formation flying scenarios may be recreated by using scalable 
scenarios. When using the optical camera for navigation purposes, the scalability shall be taken into 
account through the mock-up size, while when considering the GPS-like signal for navigation purposes, 
the scalability shall be achieved by imposing delays on the signal transmission from the pseudolites to the 
different S/C models. 

In the same way, the medium and long-range phases of a RvD scenario (e.g. probe RvD with return 
vehicle in the Mars Sample Return scenario) may be achieved through scalable scenarios, while the short-
range RvD phase (including the contact) is directly achieved by placing the static (target) spacecraft close 
to the dynamic controlled (chaser) spacecraft. 

6.0 NEXT STEPS ON PLATFORM DEVELOPMENT 

PLATFORM test bench is fully operative and it is under extension taking into account a dedicated ESA 
project targeting a complete Rendez-vous test bench.  

Future extensions of PLATFORM test bench foresee: 

• 

• 

Cooperative robotic operations on a planetary surface exploration will require for a relative 
navigation system that can be based on the same concept as the formation flying, this is 
emitting/receiving RF devices coordinated by a reference device hosted on the landing platform. 
Adding real robotic prototypes to the test bench, the robotic arm may reproduce the landing 
sequence and platform aperture and the on-board robots may descend into a model of the 
planetary surface and test and validate the proposed autonomous navigation and robot fleet 
management algorithms. 

Landing scenario recreation through the modeling of the e.g. Mars surface. In this case, the 
robotic arm (with extended dynamic through the use of a track motion) will create the dynamic 
approximation to a surface model. Landing navigation based on optical camera observation may 
be tested in such scenario. 

Finally, it shall be highlighted that, from all the capabilities offered by the presented multi-purpose, low-
cost and flexible test bench, GMV is interested in exploiting its own expertise in the development, testing 
and validation of relative navigation algorithms. In other fields as guidance and control algorithms 
development and validation, sensing and/or actuators testing and validation, GMV is open to consider the 
collaboration with other interested companies. Utilization of PLATFORM test bench by other companies 
will have no cost other than the support people required to operate the test bench and will have no 
constraints other than calendar schedule. 

7.0 CONCLUSIONS 

Formation flying technology has recently attracted the attention of the space community as a very 
interesting way to conduct more efficient and robust missions, even with less cost. There are some 
important challenges to solve in the navigation and control areas in order to achieve successful missions.  

To demonstrate the formation flying technology in space before intense ground testing is expensive and 
risky. Some way of ground simulation under close to real space conditions is needed. The proposed test 
bench tries to fill this gap in the path from concept to real mission demonstration.  

The proposed test bench is at the same time flexible and reliable. Flexible because it allows to test 
different types of missions under different environment conditions, and reliable because it involves real 
hardware equipment under quasi-real physical configuration. 
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Finally, the test bench has been conceived to be able to increase its complexity and capabilities in the 
future with the inclusion of actuators, new sensors or more satellites. 
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